A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila.

نویسندگان

  • Jun-Li Gao
  • Yu-Jie Fan
  • Xiu-Ye Wang
  • Yu Zhang
  • Jia Pu
  • Liang Li
  • Wei Shao
  • Shuai Zhan
  • Jianjiang Hao
  • Yong-Zhen Xu
چکیده

Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional studies on the ATM intronic splicing processing element

In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5' and 3' splice sites. A GTAA deletion within ISPE maintains potential adjacent spli...

متن کامل

The Drosophila U1-70K protein is required for viability, but its arginine-rich domain is dispensable.

The conserved spliceosomal U1-70K protein is thought to play a key role in RNA splicing by linking the U1 snRNP particle to regulatory RNA-binding proteins. Although these protein interactions are mediated by repeating units rich in arginines and serines (RS domains) in vitro, tests of this domain's importance in intact multicellular organisms have not been carried out. Here we report a compreh...

متن کامل

U1 small nuclear RNP from Trypanosoma brucei: a minimal U1 snRNA with unusual protein components

Processing of primary transcripts in trypanosomes requires trans splicing and polyadenylation, and at least for the poly(A) polymerase gene, also internal cis splicing. The trypanosome U1 snRNA, which is most likely a cis-splicing specific component, is unusually short and has a relatively simple secondary structure. Here, we report the identification of three specific protein components of the...

متن کامل

Genome-wide RNA-binding analysis of the trypanosome U1 snRNP proteins U1C and U1-70K reveals cis/trans-spliceosomal network

Trans-splicing in trypanosomes adds a 39-nucleotide mini-exon from the spliced leader (SL) RNA to the 5' end of each protein-coding sequence. On the other hand, cis-splicing of the few intron-containing genes requires the U1 small nuclear ribonucleoprotein (snRNP) particle. To search for potential new functions of the U1 snRNP in Trypanosoma brucei, we applied genome-wide individual-nucleotide ...

متن کامل

Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17.

Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2015